

Anomalies in labeled graphs

Problem:

Q1. Given a graph in which nodes and edges contain (non-unique) labels, what are unusual substructures?

Background

- Subdue*: An algorithm for detecting repetitive patterns (substructures) within graphs.
- Substructure: A connected subgraph of the overall graph.
- Compressing a graph: Replacing each instance of the substructure with a new vertex representing that substructure.
- Description Length (DL): Number of bits needed to encode a piece of data

^{*} http://ailab.wsu.edu/subdue/

Background

Subdue uses the following heuristic:

- The best substructure is the one that minimizes
 F1(S,G) = DL(G | S) + DL(S)
 - G: Entire graph, S: The substructure,
 - DL(G|S) is the DL of G after compressing it using S,
 - DL(S) is the description length of the substructure.

Iterations after compressing at each step

Background

Given database D and set of models for D, Minimum Description Length selects model M that minimizes

<u>L(M)</u> +

 $a_9 x^9 + ... + a_1 x + a_0$

VS.

 a_1x+a_0

deltas

1) Anomalous Substructures

- Main idea: anomalies (by def.) occur infrequently, they are roughly opposite to "best substructures"
 - Find substructures S that maximize F1(S,G)?
 - Nope, it flags all single nodes as anomalies!
 - Instead, find those that minimize

F2(S, G) = Size(S) * Instances(S,G)

Approximate inverse of F1(S,G)

Intuition: Larger substructures are <u>expected</u> to occur few times; the smaller the substructure, the less likely it is rare

Example

F2(S, G) = Size(S) * Instances(S,G)

- □ For node D, F2 = 1 * 1 = 1
- For A→C and D→A, it is 2 * 1 = 2
- For G (whole graph), it is 9 * 1 = 9
- Hence D is considered the most anomalous.

 Note: Usually a threshold for F2 is used and anomalies are ranked by their scores.

Anomalies in labeled graphs

Problem:

Q1. Given a graph in which nodes and edges contain (non-unique) labels, what are unusual substructures?

Q2. Given a set of subgraphs, what are the unusual subgraphs?

Note: assumption is anomalies are connected

2) Anomalous Subgraphs

- Main idea: subgraphs containing few common substructures are generally more anomalous
 - Define anomaly score A in [0,1]

Experiments

- Data: 1999 KDD Cup Network Intrusion (
 - Ground truth: connection records, "normal" or attack (37 types), 41 features of connection (duration, protocol type, number of bytes, etc.)
 - Each individual test involved 50 records of which only one is of a particular attack type.
- Use Subdue to find anomalous substructures
 Prune all subgraphs with size>3, F2>6 (arbitrary)

Anomalies with numeric labels

- How about numeric labels?
 - Noble & Cook work with categorical labels
 - (1) unusual substructures

Davis et al. '11

Anomalies with numeric labels

- How about numeric labels?
 - Noble & Cook work with categorical labels

Anomalies with numeric labels

- Main idea (discretization):
 - \square assign categoric label q_0 to "normal" values, and
 - "outlierness" score q_i to all others i
- Example: empirical distribution of a label

 Several "outlierness" scores (pdf-fitting, kNN, LOF, clustering-based)

Discretization

kNN distance

distance to closest "large" (k-means) cluster centroid

Discretization

- Other possible discretization techniques
 - SAX (Symbolic Aggregate approXimation)
 - <u>http://www.cs.ucr.edu/~eamonn/SAX.htm</u>
 - MDL-binning
 - P. Kontkanen and P. Myllymäki. *MDL histogram density estimation*. In AISTAT, 2007.
 - Minimum entropy discretization
 - U.M. Fayyad and K.B. Irani. Multi-interval discretization of continuous-valued attributes for classification learning. In Proc. IJCAI, 1989.
 - Logarithmic binning
 - especially for skewed distributions

Experiment

Data: Access card transaction graphs

node: door sensor, edge (u,w): movement u→w, weight(u,w): time u→w (only numeric attribute)

Eberle and Holder. '07

Anomalies in labeled graphs

Problem:

Q1. Given a graph in which nodes and edges contain (non-unique) labels, how to find substructures that are very similar to, though not the same as, a normative substructure? ("best substructure" as for Subdue)*

Intuition:

"The more successful money-laundering apparatus is in imitating the patterns and behavior of legitimate transactions, the less the likelihood of it being exposed."

- United Nations Office on Drugs and Crime

Formal definition

Given graph G with a normative substructure S, a substructure S' is anomalous if difference d between S and S' satisfies 0 < d <= X, where X is a (user-defined) threshold and d is a measure of the unexpected structural difference.

Assumptions

- Majority of G consists of a normative pattern, and no more than X% of it is altered in an anomaly.
- Anomalies consist of one or more modifications, insertions or deletions.
- Normative pattern is connected.

Three Types of Anomalies

- 1) GBAD-MDL (Minimum Descriptive Length): anomalous modifications
- 2) GBAD-P (Probability): anomalous insertions
- 3) GBAD-MPS (Maximum Partial Substructure): anomalous deletions

Note: prone to miss more than one type of anomaly • e.g., a deletion followed by modification

1) Information Theoretic Approach

- Find normative substructure S that minimizes
 F(S,G) = DL(G | S) + DL(S)
- For each instance I_k of S
- anomalyScore(I_k) = freq(I_k) * matchcost(I_k ,S) the lower, the more anomalous cost to modify I_k into S Example:

2) Probabilistic Approach

- Find normative substructure S
- Find extensions to **S** with lowest probability
- For each extension I_k of S

anomalyScore(I_k) = $\frac{\text{number of instances of } I_k}{\text{all instances } I_n \text{ with a unique extension}}$

Example:

3) Maximum Partial Substructure Approach

- Find normative substructure S
- Find "ancestral" substructures $S_n \subseteq S$ that are missing various edges and vertices.
- For each instance I_k of S_n

anomalyScore(I_k) = $|I_n| * \text{matchcost}(I_k,S)$ # instances of I_k

Example:

Experiments (Cargo shipments)

 Data: obtained from Customs and Borders Protection (CBP)

Scenario:

- Marijuana seized at Florida port [press release by U.S. Customs Service, 2000].
- Smuggler did not disclose some financial information, and ship traversed extra port.
- GBAD-P discovers the extra traversed port;
- GBAD-MPS discovers the missing financial info.

Experiments (Network intrusion)

Data: 1999 KDD Cup Network Intrusion

- 100% of attacks were discovered with GBAD-MDL
- 55.8% for GBAD-P and 47.8% for GBAD-MPS

Note

- Data consists of TCP packets that have fixed size
- Thus, the inclusion of additional structure, or the removal of structure, is not relevant here.
- Modification is the only relevant one, at which GBAD-MDL performs well

High (unreported) false positive rate!

Community Outliers

Definition

89

Gao et al. '10

- Two information sources: links, node features
- Communities based on both links and node features
- Objects with features deviating from other community members defined as community outliers

Other network outliers

 $\left(\mathbf{V}_{7}\right)$

 $|\mathbf{V_8}\rangle$

1) Global outlier: only considers node features

 (\mathbf{V}_9) V_3 V₁₀) 10 30 40 70 100 110 140 **Salary (in \$1000)** structural outlier local outlier 2) Structural outlier: only consider links (V_7) 10K 70K 160K **30K** \mathbf{V}_2 V_8 10K 140K(V Vg 100K **40K 110K 30K**

Global Outlier

 $\left(V_{2}\right)$

160

90

3) Local outlier: only consider the feature values of direct neighbors

L. Akoglu & C. Faloutsos

Gao+KDD'10 Anomaly detection in graph data (WSDM'13) modified with permission

A unified probabilistic model

L. Akoglu & C. Faloutsos

Anomaly detection in graph data (WSDM'13)

Gao+KDD'10 modified with permission 91

Optimization formulation

92

- Maximize $P(X) \propto P(X|Z) P(Z)$
 - P(X|Z) depends on community label and model param.s
 - e.g., salaries in the high or low-income communities follow Gaussian distributions defined by mean and std

$$P(x_i = s_i | z_i = k) = P(x_i = s_i | \theta_k)$$

Normal with $\{\mu_k, \sigma_k^2\}$
$$P(x_i = s_i | z_i = 0) = \rho_0 \checkmark$$
 Uniform for outliers

- P(Z) is higher if neighboring nodes from normal communities share the same community label
 - e.g., two linked nodes are likely to be in the same community
 - outliers are isolated—does not depend on the labels of neighbors

$$P(Z) \propto \sum_{w_{ij}>0, z_i\neq 0, z_j\neq 0} w_{ij}\delta(z_i-z_j)$$

Algorithm

- Initialization is very important (by clustering)
- Convergence/correctness not guaranteed

L. Akoglu & C. Faloutsos

Algorithm: parameter estimation

- Calculate model parameters Θ
 - maximum likelihood estimation
- Continuous: $\{\mu_k, \sigma_k^2\}$
 - mean: sample mean of the community
 - std: square root of sample variance of community

L. Akoglu & C. Faloutsos

Anomaly detection in graph data (WSDM'13) Gao+KDD'10

Algorithm: inference

Calculate label assignments Z

- Model parameters are known
- Iteratively update the community labels of nodes
- For each node: select label that maximizes:

L. Akoglu & C. Faloutsos

Anomaly detection in graph data (WSDM'13) modified with permission

Experiments: Simulations

Data

- Generate continuous data based on Gaussian distributions and generate labels according to the model
- **r**: percentage of outliers, K: number of communities
- Baseline models
 - GLODA: global outlier detection (based on node features only)
 - DNODA: local outlier detection (check the feature values of direct neighbors)
 - CNA: partition data into communities based on links and then conduct outlier detection in each community

Experiments: Simulations

Case study on DBLP

- Conferences graph
 - Links: % common authors among two
 - Node features: publication titles in the conference

Communities:

- Database: ICDE, VLDB, SIGMOD, PODS, EDBT
- Artificial Intelligence: IJCAI, AAAI, ICML, ECML
- Data Mining: KDD, PAKDD, ICDM, PKDD, SDM
- Information Analysis: SIGIR, WWW, ECIR, WSDM

Community outliers: CVPR and CIKM

Akoglu et al. '12 Cohesive groups in attributed graphs

Problem:

Given a graph with node attributes (features)

- social networks + user interests
- phone call networks + customer demographics
- gene interaction networks + gene expression info

Find cohesive clusters, bridges, anomalies

Note: cohesive cluster: similar connectivity & attributes

Problem sketch

Given adjacency matrix A and feature matrix F Find homogeneous blocks (clusters) in A and F * parameter-free

* scalable

Problem formulation

How many node- & attribute-clusters?
 How to assign nodes and attributes to clusters?

Main idea: employ Minimum Description Length

Problem formulation

- L (M) : Model description cost
 - 1. $\log^* n + \log^* f$ n: #nodes, f: #attributes
 - k: #node-clusters, I: #attribute-clusters
 - **3.** nH(P) + fH(Q)

2. $\log^* k + \log^* l$

- $p_i = \frac{r_i}{n}$ size of node-cluster i size of attribute-cluster j $q_j = \frac{c_j}{f}$
- L(D|M): Data description cost given Model
 - 1. For each block in A and F, #1s: $\log^* n_1(B_{ij})$

A similar problem (column re-ordering for minimum total run length) is shown to be NP-hard [Johnson+]. (reduction from Hamiltonian Path)

 $= -n_1(B_{ij}) \log_2(P_{ij}(1)) - n_0(B_{ij}) \log_2(P_{ij}(0))$

Algorithm sketch

The algorithm is iterative and monotonic –will converge to local optimum

L. Akoglu & C. Faloutsos

Anomaly detection in graph data (WSDM'13)

PICS at work (Political books)

Examples of "core" liberal and conservative books

Anomaly detection in graph data (WSDM'13)

PICS at work (Reality mining)

PICS at work (YouTube)

Part I: References (attribute graphs)

- C. C. Noble and D. J. Cook. <u>Graph-based anomaly</u> <u>detection</u>. KDD, pages 631–636, 2003.
- W. Eberle and L. B. Holder. <u>Discovering structural</u> <u>anomalies in graph-based data</u>. ICDM Workshops, pages 393–398, 2007.
- Michael Davis, Weiru Liu, Paul Miller, George Redpath: <u>Detecting anomalies in graphs with numeric labels</u>. 1197-1202, CIKM 2011.
 - Jing Gao, Feng Liang, Wei Fan, Chi Wang, Yizhou Sun, Jiawei Han: <u>On community outliers and their efficient</u> <u>detection in information networks</u>. KDD 2010: 813-822.
- Leman Akoglu, Hanghang Tong, Brendan Meeder, Christos Faloutsos. <u>PICS: Parameter-free Identification of Cohesive</u> <u>Subgroups in large attributed graphs</u>. SDM, 2012.

Substructures

Tutorial Outline

- Motivation, applications, challenges
- Part I: Anomaly detection in static data
 - Overview: Outliers in clouds of points
 - Anomaly detection in graph data

Part II: Event detection in **dynamic** data

- Overview: Change detection in time series
- Event detection in graph sequences

Part III: Graph-based algorithms and apps

- Algorithms: relational learning
- Applications: fraud and spam detection

109