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Noble & Cook. ‘03

N\Zvok v

' Anomalies in labeled graphs

m Problem:

Q1. Given a graph in which nodes and edges
contain (non-unique) labels, what are
unusual substructures?
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‘ Background
N *. An algorithm for detecting repetitive
patterns (substructures) within graphs.

= Substructure: A connected subgraph of the
overall graph.

= Compressing a graph: Replacing each
iInstance of the substructure with a new
vertex representing that substructure.

= Description Length (DL): Number of bits
needed to encode a piece of data

* http://ailab.wsu.edu/subdue/
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‘ Background

m uses the following heuristic:

o The best substructure is the one that minimizes
F1(S,G) =DL(G | S) + DL(S)

= G: Entire graph, S: The substructure,
= DL(G|S) is the DL of G after compressing it using S,
= DL(S) is the description length of the substructure.

= lterations after compressing at each step

L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13)
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‘ Background

Given database D and set of models

for D, Minimum Description Length d=1

selects model M that minimizes :
LM + L(DIM)
length in bits: length in bits: data, V>

description of encoded by M l /fs"“-a\ d=9 |
m O d el M ot ’ \S/ﬂ&\""\.\l {;g,--"'ﬁ"'.lII T
@ @ A %/ ﬁ ‘
a;x+a, deltas I i
VS . Bishop: PR&ML

agx’+...ta;x+a, {}
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‘ 1) Anomalous Substructures

= Main idea: anomalies (by def.) occur infrequently,
they are roughly opposite to "best substructures”

o Find substructures S that maximize F1(S,G)?
= Nope, it flags all single nodes as anomalies!

o Instead, find those that minimize
F2(S, G) = Size(S) * Instances(S,G)
= Approximate inverse of F1(S,G)

= [ntuition: Larger substructures are expected to
occur few times; the smaller the
substructure, the less likely it is rare
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‘ Example

m F2(S, G) = Size(S) * Instances(S,G)
a0 FornodeD,F2=1*1=1
a0 ForA>Cand D2>A,itis2*1 =2
o For G (whole graph), itis9*1=9
= Hence D is considered the most anomalous.

A

/J’
c)e—(B)—Hpp—(B)—(B)—(C

= Note: Usually a threshold for F2 is used and
anomalies are ranked by their scores.
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Noble&CoqﬂI‘f. ‘03
' Anomalies in labeled graphs -

m Problem:

Q1. Given a graph in which nodes and edges
contain (non-unique) labels, what are
unusual substructures?

Q2. Given a set of subgraphs, what are the
unusual subgraphs?

Note: assumption is anomalies are connected
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‘ 2) Anomalous Subgraphs

= Main idea: subgraphs containing few common
substructures are generally more anomalous

o Define anomaly score A in [0,1]

I o
A= 1——2(71—14—1) *C
noo5 AN =
fast drop off in
early iterations

# Subdue™
iterations

fraction compressed

at ith iteration

DL, ,(G)=DL.(G)
DL,(G)
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‘ Experiments
= Data: 1999 KDD Cup Network Intrusion é

o Ground truth: connection records, “normal” or
attack (37 types), 41 features of connection
(duration, protocol type, number of bytes, etc.)

o Each individual test involved 50 records of which
only one iIs of a particular attack type.

= Use Subdue to find anomalous substructures
o Prune all subgraphs with size>3, F2>6 (arbitrary)
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Davis et al. '11

'Anomalies with numeric labels

= How about numeric labels?
o Noble & Cook work with categorical labels

(1) unusual substructures

(/;;4\| G\;\) /e.:rq
| "
el el e,
o
. Q .
: <D
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‘ Anomalies with numeric labels

= How about numeric labels?
o Noble & Cook work with categorical labels

(2) unusual subgraphs

Structural Anomalies

aaaaa |ocatlon® @ ‘
tlme
(if) 0807

(iv)
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‘ Anomalies with numeric labels

= Main idea (discretization):
0 assign categoric label g, to "normal” values, and
0 “outlierness” score (; to all others |

= Example: empirical distribution of a label

60

40

2l

0
0 100 200 300 400 500 600 700 600 300

= Several “outlierness” scores (pdi-fitting, kNN,
LOF, clustering-based)
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Discretization :

40

s Model fitting (GMM) 2”

0
0 100 200 300 400 500 600 700 800 900

1

o g if1— P(t:) <
%=1 1-P(t;) otherwise

06

':|4 1 1 | 1 I 1 1 | |
0 100 200 300 400 500 B00 700 G 8000

m KNN distance

100
|

L qo if k-distance(t;) ~ 0
4 = k-distance(t;) otherwise

1] 100 200 300 400 200 &E00 ro0 goa 300
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D N OB
Discretization jj H A
m Density outlier score (LOF)

o qo if LOF(¢;) ~ 1 Breunig et al. ‘00
4= LOF(t;) otherwise

g

normal—

D 1 1 L 1 1 1 1 1
0 100 200 300 400 200 600 700 800 300

= Cluster based (CbLOF)

E

,| He etaI ‘03
/ qo if CBLOF(t;) <
2\/ CBLOF (t;) otherwise
3':' Ell:“:l

D

0 4 EDEI ? BEIEI

distance to closest “large” (k-means) cluster centroid
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Discretization

= Other possible discretization techniques
0 SAX (Symbolic Aggregate approXimation)

= http://www.cs.ucr.edu/~eamonn/SAX.htm

o MDL-binning

= P. Kontkanen and P. Myllymaki. MDL histogram

density estimation. In AISTAT, 2007.

o Minimum entropy discretization
= U.M. Fayyad and K.B. Irani. Multi-interval

discretization of continuous-valued attributes for
classification learning. In Proc. IJCAI, 1989.

o Logarithmic binning
= especially for skewed distributions

L. Akoglu & C. Faloutsos
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‘ Experiment

= Data: Access card transaction graphs

o nhode: door sensor, edge (u,w). movement u->w,
weight(u,w): time u->w (only numeric attribute)

1800
% 1 Equal freq.
‘S 1400 (b:10)
% 1200+ .
SUZ') 1000+ Equal width il CbLOF
o (b=10) Y/ (k=10)
-+ 800~ ;
e K-NN dist. ’
k=10 ; Subdue
A0 ( ) . .
" (numeric feat. ignored)
200+ =
0, e o peeememommemamememenn e et
0.9 0.8 07 0.6 05 04
* arbltrary K, b anomaly score . _normal
: 80
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Eberle and H°'d€'§: ‘o7
‘ Anomalies in labeled graphs

m Problem:

Q1. Given a graph in which nodes and edges
contain (non-unigque) labels, how to find
substructures that are very similar to, though
not the same as, a normative substructure?
("best substructure” as for Subdue)*

m |ntuition:

“The more successful money-laundering
apparatus is in imitating the patterns and
behavior of legitimate transactions, the less
the likelihood of it being exposed.”

— United Nations Office on Drugs and Crime
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‘ Formal definition

= Given graph G with a normative substructure S,
a substructure S’ iIs anomalous if difference d
between S and S’ satisfies 0 < d <= X, where X
IS a (user-defined) threshold and d is a measure
of the unexpected structural difference.

m Assumptions

o Majority of G consists of a normative pattern, and
no more than X% of it is altered in an anomaly.

o Anomalies consist of one or more modifications,
Insertions or deletions.

o Normative pattern is connected.
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‘ Three Types of Anomalies

1) GBAD-MDL (Minimum Descriptive Length):
anomalous modifications

2) GBAD-P (Probability): anomalous insertions

3) GBAD-MPS (Maximum Partial Substructure):
anomalous deletions

Note: prone to miss more than one type of anomaly
o e.g., a deletion followed by modification
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‘ 1) Information Theoretic Approach

= FIind normative substructure S that minimizes
F(S,G) =DL(G | S) + DL(S)
= For each instance I, of S
anomalyScore(/;) = freq(/;) * matchcost(/;,S)

the lower, the more anomalous cost to modify I, into S
s Example:
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2) Probabilistic Approach

~ind normative substructure S
~ind extensions to S with lowest probability
~or each extension I, of S

number of instances of /;

anomalyScore(/;) =

all instances 7, with a unique extension

Example:

c o & o o

© 06 06 0O 06 06 0

e o o o e e e e e

L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13) 85



‘ 3) Maximum Partial Substructure Approach

= FInd normative substructure S

= Find “ancestral” substructures S, < S that are
missing various edges and vertices.

» For each instance |, of S,
anomalyScore(/;) = | I, | * matchcost(Z;,S)
# Instances of Ik/
s Example:
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= Data: obtained from Customs
and Borders Protection (CBP)

m Scenario:

o Marijuana seized at Florida port [press release by U.S.
Customs Service, 2000].

o Smuggler did not disclose some financial information,
and ship traversed extra port.

o GBAD-P discovers the extra traversed port;
o GBAD-MPS discovers the missing financial info.
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. . . R
‘ Experiments (Network intrusion) !

m Data: 1999 KDD Cup Network Intrusion

o 100% of attacks were discovered with GBAD-MDL
o 55.8% for GBAD-P and 47.8% for GBAD-MPS

Note
= Data consists of TCP packets that have fixed size

= Thus, the inclusion of additional structure, or the
removal of structure, Is not relevant here.

= Modification is the only relevant one, at which GBAD-
MDL performs well

o High (unreported) false positive rate!
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Gao et al. 10

‘ Community Outliers

= Definition

o Two Information sources: links, node features
o Communities based on both links and node features

o Objects with features deviating from other community
members defined as community outliers
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‘ Other network outliers

------------------------------------------------------------------------------

1) Global outlier: | @) ()  covaloutier
only considers g‘ W) @ ©

node features 30 40 70 100 110 140 160
i Salary (in $1000)

2) Structural outlier:
only consider links |

3) Local outlier:
only consider the
feature values of
direct neighbors
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e v community
.~ label Z
{0, 1, ..., K}

node
features |

'I- -I--I-Il--i-lllnll-‘.-lq:l-l- --IE - E .‘...II'Ii'll'll'I'I'I'Iql-'l-I.I.II.+...II.I.;“...I. q -Il--l-.-lli-‘l-llll

I|nk structure

00000 O ®®H W

K 140K TIK 100K 160K 110K 30K 10K K 30K

Observed Data

© = (01,...,0K) model

K: number of parameters
communities X's are
(user input) drawn from
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Al

details"&’

‘ Optimization formulation
= Maximize P(X) oc P(X|Z) P(2)

o P(X|Z) depends on community label and model param.s

= e.g., salaries in the high or low-income communities follow
Gaussian distributions defined by mean and std

P(xi = silzi = k) = P(x; = s:|0k) | )

P(e: = silz = 0) — Normal with{ ¢k, 0, }
e = siE = 0= PO Uniform for outliers

o P(Z) is higher if neighboring nodes from normal
communities share the same community label
= e.g., two linked nodes are likely to be in the same community
= outliers are isolated—does not depend on the labels of neighbors

P(Z) oC Z U;’.-.gj(S(Z@: — Zj)

u.-'?jj >O,Z?j }LOZJ #0

L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13) Gao*KDD10 o 92
modified with permission



Algorithm

® : model parameters

Initialize 2 Z . community labels
Fix Z, find ® <= Parameter
that maximizes P(X|Z) estimation
Fix ®, find Z
that maximizes P(z|X) = Inference
|

= [nitialization Is very important (by clustering)
= Convergence/correctness not guaranteed
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‘ Algorithm: parameter estimation

= Calculate model parameters ©®
2 maximum likelihood estimation
= Continuous: {u, o3}
o mean: sample mean of the community
o std: square root of sample variance of community

high-income:

mean: 116k
std: 35k

low-income:
mean: 20k
std: 12k

000005 © ©

_ 4K 140K 70K 100K 160K 110K 30K 10K K 30K |

Observed Data
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‘ Algorithm: inference

= Calculate label assignments Z

2 Model parameters are known
o lteratively update the community labels of nodes
o For each node: select label that maximizes:

P(zi|lri = si,z1—qiy) < P(x; = ()\ Z w;;j0(zi—z;) )

/ | \

high-income:  P(salary=100k|high-income) P(high—incomelneighbors)
low-income: P(salary=100k|low-income) P(low-income|neighbors)

outlier: constant high-
100k '
low-
igh-incom@y, Aow-incomex, INCOME
mean: 116k mean: 20k
std: 35k std: 12k
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‘ Experiments: Simulations

s Data

o Generate continuous data based on Gaussian
distributions and generate labels according to the
model

o r: percentage of outliers, K: number of communities

s Baseline models

Q0 . global outlier detection (based on node
features only)

o DNODA: local outlier detection (check the feature
values of direct neighbors)

Q . partition data into communities based on links
and then conduct outlier detection in each community
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‘ Experiments: Simulations

Precision

08

0.7 1

0.6 1

0.5 - @ GLODA

E DNODA
OCNA
m CODA

04 1

0.3 -

0.2 +

0.1

r=1% K=5 r=5% K=5 r=1% K=8 r=5% K=8
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‘ Case study on DBLP

= Conferences graph
o Links: % common authors among two
o Node features: publication titles in the conference

= Communities:
e Database: ICDE, VLDB, SIGMOD, PODS. EDBT

e Artificial Intelligence: IJCAI, AAAI, ICML, ECML
e Data Mining: KDD, PAKDD, ICDM, PKDD. SDM

e Information Analysis: SIGIR, WWW, ECIR, WSDM

= Community outliers: CVPR and CIKM
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Akoglu et al. '12
Cohesive groups in attributed graphs

m Problem:

Given a graph with node attributes (features)
o social networks + user interests
a phone call networks + customer demographics
o gene interaction networks + gene expression info

Find cohesive clusters, bridges, anomalies

Note: cohesive cluster: similar connectivity & attributes
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‘ Problem sketch

People

(Binary) Feature
People Features People Groups Groups
1 2 3 4 5 A1 A A
L familiar S :
100 e traditional
strangers _/} | 00
200 8.!00 7 ;Iusters | 8_ N
300 2 . >
o ) 00
400 e - A= 00
O O
500 100 | 00
600 i') 00 2 00
700 8'-00 B 2 o "
800 & 0 bipartite-core & 00
900 5 2 H00- 160':206” 300 400 500 60D 700 800 800 005 50 10.0. 150
200 400 600 800 50 100 150 Node Groups Feature Groups

Nodes Features

Given adjacency matrix A and feature matrix F
Find homogeneous blocks (clusters) in A and F
* parameter-free
* scalable
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‘ Problem formulation

1.How many node- & attribute-clusters?
2. How to assign nodes and attributes to clusters?

Main idea: employ Minimum Description Length

L I\/I + L D M - 14—'—&%“"3[ : tr: itionsa

v ( ) Y] v ( | ) y ) o stranger;( cluiters '
Y Y -

encoding length  encoding length -

of clustering of blocks - L

Clustering Compression
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Al
'Problem formulation

= L (M) : Model description cost

1. log* n + log* f n: #nodes, f: #attributes

2. log* k + log* k: #node-clusters, |: #attribute-clusters
3. nH(P) + fH(Q) r; <. Size of node-cluster i
Pi = T . .
Pi= """ size of attribute-cluster j
_ C; &«
4 = F

= L(D|M): Data description cost given Model
1. Foreach blockin A and F, #1s:log* nq(DB;;)

2 L/iD N o (D Nl (T (1)) o (D NN (T (NN

A similar problem (column re-ordering for minimum
total run length) is shown to be NP-hard [Johnson+].
(reduction from Hamiltonian Path)

.—--------------------
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'Algorithm sketch

Nods Groups
@ N oM WM B W N o
8 8 8 B 8 B 8B

™ Noce Growe
(a) k=1 1=2
Split-FeatureGroup

The algorithm is iterative and monotonic
—will converge to local optimum
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'PICS at work (Political books)

Examples of “core” liberal and conservative books
Liberal

and the Lying @W’ho Tell Them: A(Fair)and
&Look at the Right
—Big The CIW ropaganda Machine and
How It Distorts th

George W. Busl

—Th
—Dude, Where's My Country?

Conservative
—Persecution: How@qm Waging War Against
Christianity

—Deliver Us from Defeating Terrorism, Despo-

tism. and Liberalism

from the Coast

—A National Party No More

Examples of bridging ‘conservative’ books

=Bush at War
—“The Bushes: Portrait of a Dynasty

~ Rise of the Vulcans: The History of Bush’s War Cabinet
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'PICS at work (Reality mining)

/ call-center

',casuaii-

]

10~
20 - 1F¥. 20}
VI bUS|hess , )
§4o ) . E_ - o 40t
Qs " I S O gof
Se0 h '-2'-:'::& % ool
Sk, T
70- e rad 70}
80?';777iiil:ifiji_iiif_-:j.r.. 80_
o "y r_ . w
9 R R 90} =
20 40 60 80 )
. 5
Subjects 2 ol

Phone calls

Subjects
Device scans
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'PICS at work (YouTube)

1l Yoni ' i : ¥ -
famlllar Stra ngerus ' l‘lgEI’S?nl eu\irls ri ge'pi/ﬂlj?‘lu 1¢ @iluu iers' porg m sic anlrggnesal interest
' soe) T [ o | ALY S

S

anime lovers

» animne
| -
& users' 5 LN SR o RN
5 @
7]
g >S5
— 2 4
S'hri
3 bridge _g
o
>

b

'outliers - =al
1 z 3 ) 3 a] 7 ) 1 2 3

YouTube users YouTube “
groups

Ealll

/7K users
30K groups
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‘ Tutorial Outl

Ine

m Motivation, applications, challenges

m Part |; Anoma

y detection in static data

o Overview: Out

lers in clouds of points

o Anomaly detection in graph data

mpPart II: Event detection in dynamic data
o Overview: Change detection in time series

o Event detectio

nin graph sequences

= Part Ill: Graph-based algorithms and apps
o Algorithms: relational learning

o Applications: f

raud and spam detection
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