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Anomalies in labeled graphs 

 Problem: 

Q1. Given a graph in which nodes and edges     

       contain (non-unique) labels, what are   

       unusual substructures? 

Noble & Cook. ’03 
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Background 

 Subdue*: An algorithm for detecting repetitive 

patterns (substructures) within graphs.   

 Substructure: A connected subgraph of the 

overall graph. 

 Compressing a graph: Replacing each 

instance of the substructure with a new 

vertex representing that substructure. 

 Description Length (DL): Number of bits 

needed to encode a piece of data 

 

 

 

* http://ailab.wsu.edu/subdue/ 
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Background 

 Subdue uses the following heuristic: 

 The best substructure is the one that minimizes 

 F1(S,G) = DL(G | S) + DL(S) 

 G: Entire graph, S: The substructure,  

 DL(G|S) is the DL of G after compressing it using S,  

 DL(S) is  the description length of the substructure. 

 

 

 

 Iterations after compressing at each step 

S 
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Background 
Given database D and set of models 

for D, Minimum Description Length 

selects model M that minimizes 

     L (M)     +     L (D|M) 

length in bits:  

description of  

model M 

length in bits: data,  

encoded by M 

Bishop: PR&ML 

d = 1 

d = 9 

a1x+a0 deltas 

a9x
9+…+a1x+a0  {} 

vs. 

vs. 
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1) Anomalous Substructures 

 Main idea: anomalies (by def.) occur infrequently, 

they are roughly opposite to “best substructures” 

 Find substructures S that maximize F1(S,G)? 

 Nope, it flags all single nodes as anomalies! 

 Instead, find those that minimize 

    F2(S, G) = Size(S) * Instances(S,G) 

 Approximate inverse of F1(S,G) 

 

 Intuition: Larger substructures are expected to   

  occur few times; the smaller the   

  substructure, the less likely it is rare 
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Example 
 F2(S, G) = Size(S) * Instances(S,G) 

 For node D, F2 = 1 * 1 = 1 

 For AC and DA, it is 2 * 1 = 2 

 For G (whole graph), it is 9 * 1 = 9 

 Hence D is considered the most anomalous. 

 

 
 

 Note: Usually a threshold for F2 is used and 

anomalies are ranked by their scores. 
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Anomalies in labeled graphs 

 Problem: 

Q1. Given a graph in which nodes and edges     

       contain (non-unique) labels, what are   

       unusual substructures? 

Q2. Given a set of subgraphs, what are the  

       unusual subgraphs? 

 

 

 

 

 
Note: assumption is anomalies are connected 

Noble & Cook. ’03 
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2) Anomalous Subgraphs 

 Main idea: subgraphs containing few common 

substructures are generally more anomalous 

 Define anomaly score A in [0,1] 

# Subdue 

iterations 
fraction compressed  

at ith iteration 
fast drop off in  

early iterations 
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Experiments 

 Data: 1999 KDD Cup Network Intrusion 

 Ground truth: connection records, “normal” or 

attack (37 types), 41 features of connection 

(duration, protocol type, number of bytes, etc.) 

 Each individual test involved 50 records of which 

only one is of a particular attack type. 

 

 Use Subdue to find anomalous substructures 

 Prune all subgraphs with size>3, F2>6 (arbitrary) 
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Anomalies with numeric labels 

 How about numeric labels? 

 Noble & Cook work with categorical labels 

 

Davis et al. ’11 

(1) unusual substructures 
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 How about numeric labels? 

 Noble & Cook work with categorical labels 

 

Anomalies with numeric labels 

(2) unusual subgraphs 
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Anomalies with numeric labels 

 Main idea (discretization):  

 assign categoric label q0 to “normal” values, and  

 “outlierness” score qi to all others i 

 

 Example: 

 

 

 

 

 Several “outlierness” scores (pdf-fitting, kNN, 

    LOF, clustering-based) 

 

 

 

 

empirical distribution of a label 
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Discretization  

 Model fitting (GMM) 

 

 

 

 

 kNN distance 

normal 
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Discretization  

 Density outlier score (LOF) 

 

 

 

 Cluster-based (CbLOF) 

 

 

normal 

distance to closest “large” (k-means) cluster centroid 

Breunig et al. ’00 

He et al. ’03 
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Discretization 

 Other possible discretization techniques 

 SAX (Symbolic Aggregate approXimation) 

 http://www.cs.ucr.edu/~eamonn/SAX.htm 

 MDL-binning 

 P. Kontkanen and P. Myllymäki. MDL histogram 

 density estimation. In AISTAT, 2007. 

 Minimum entropy discretization 

 U.M. Fayyad and K.B. Irani. Multi-interval 

discretization of continuous-valued attributes for 

classification learning. In Proc. IJCAI, 1989. 

 Logarithmic binning 

 especially for skewed distributions 
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Experiment 
 Data: Access card transaction graphs 

 node: door sensor, edge (u,w): movement uw, 

weight(u,w): time uw  (only numeric attribute) 

 

normal anomaly score 

#
tr

a
n
sa

ct
io

n
s 

Subdue 
(numeric feat. ignored) 

CbLOF 
(k=10) 

Equal freq. 
(b=10) 

Equal width 
(b=10) 

k-NN dist. 
(k=10) 

* arbitrary k, b 
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Anomalies in labeled graphs 
 Problem: 

Q1. Given a graph in which nodes and edges  

 contain (non-unique) labels, how to find 

 substructures that are very similar to, though 

 not the same as, a normative substructure? 

 (“best substructure” as for Subdue)* 

 

 Intuition: 

 

Eberle and Holder. ’07 

“The more successful money-laundering 
apparatus is in imitating the patterns and 
behavior of legitimate transactions, the less 
the likelihood of it being exposed.”  

– United Nations Office on Drugs and Crime 
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Formal definition 
 Given graph G with a normative substructure S, 

a substructure S’ is anomalous if difference d 

between S and S’ satisfies 0 < d <= X, where X 

is a (user-defined) threshold and d is a measure 

of the unexpected structural difference. 

 Assumptions 

 Majority of G consists of a normative pattern, and 

no more than X% of it is altered in an anomaly. 

 Anomalies consist of one or more modifications, 

insertions or deletions. 

 Normative pattern is connected. 
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Three Types of Anomalies 

1) GBAD-MDL (Minimum Descriptive Length): 

 anomalous modifications 

2) GBAD-P (Probability): anomalous insertions 

3) GBAD-MPS (Maximum Partial Substructure): 

 anomalous deletions 

 

 

 
Note: prone to miss more than one type of anomaly  

 e.g., a deletion followed by modification 
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1) Information Theoretic Approach 
 Find normative substructure S that minimizes 

 F(S,G) = DL(G | S) + DL(S) 

 For each instance Ik of S 

 

 

 Example: 

 

 
A

C B

A

D B

A

C B

A

C B

A

C B

cost to modify Ik into S  
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2) Probabilistic Approach 
 Find normative substructure S 

 Find extensions to S with lowest probability 

 For each extension Ik of S 

 

 

 

 Example: 

 

 

D

B

C A

B

C A

B

C A

D C D

B

C A

B

C A

E E

B

C A

B

C A

C
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3) Maximum Partial Substructure Approach 

 Find normative substructure S 

 Find “ancestral” substructures                that are 

missing various edges and vertices. 

 For each instance Ik of Sn 

 

 Example: 

 D

B

C A

B

C A

B

C A

D D D

B

C A

B

C A

# instances of Ik  
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Experiments (Cargo shipments) 

 Data: obtained from Customs                            

and Borders Protection (CBP) 

 Scenario: 

 Marijuana seized at Florida port [press release by U.S. 

Customs Service, 2000]. 

 Smuggler did not disclose some financial information, 

and ship traversed extra port. 

 GBAD-P discovers the extra traversed port; 

 GBAD-MPS discovers the missing financial info. 
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Experiments (Network intrusion) 

 Data: 1999 KDD Cup Network Intrusion 

 100% of attacks were discovered with GBAD-MDL 

 55.8% for GBAD-P and 47.8% for GBAD-MPS 

 

Note  

 Data consists of TCP packets that have fixed size 

 Thus, the inclusion of additional structure, or  the 

removal of structure, is not relevant here. 

 Modification is the only relevant one, at which GBAD-

MDL  performs well 

 

 High (unreported) false positive rate! 
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Community Outliers 
 Definition 

 Two information sources: links, node features 

 Communities based on both links and node features 

 Objects with features deviating from other community 
members defined as community outliers 

 

Gao et al. ’10 

Community  

outlier 
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community 

label Z 

{0, 1, …, K} 

outlier 

node 

features 

X 

link structure 

W 

model 

parameters 

X’s are 

drawn from 

K: number of 

communities 

(user input) 

A unified probabilistic model  
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Optimization formulation 

 Maximize P(X)       P(X|Z) P(Z) 
 P(X|Z) depends on community label and model param.s 

 e.g., salaries in the high or low-income communities follow 
Gaussian distributions defined by mean and std 

 

 

 

 

 P(Z) is higher if neighboring nodes from normal 
communities share the same community label 
 e.g., two linked nodes are likely to be in the same community 

 outliers are isolated—does not depend on the labels of neighbors 

 

 



Uniform for outliers 



Normal with 

details 
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Algorithm 

Fix    , find Z  
that maximizes P(Z|X) 

Fix Z, find  
that maximizes P(X|Z) 





Initialize Z 

Inference 

Parameter 

estimation 

  : model parameters 

Z : community labels 


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 Initialization is very important (by clustering) 

 Convergence/correctness not guaranteed 



Algorithm: parameter estimation 
 Calculate model parameters 

 maximum likelihood estimation 

 Continuous: 
 mean: sample mean of the community 

 std: square root of sample variance of community 

high-income: 

mean: 116k 

std: 35k 

low-income: 

mean: 20k 

std: 12k 


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Algorithm: inference  
 Calculate label assignments Z 

 Model parameters are known 

 Iteratively update the community labels of nodes 

 For each node: select label that maximizes: 

 

100k 
low-
income 

high-
income 

high-
income 

P(salary=100k|high-income) 

P(salary=100k|low-income) 

constant 

P(high-income|neighbors) 

P(low-income|neighbors) 

high-income: 

low-income: 

outlier: 

high-income: 

mean: 116k 

std: 35k 

low-income: 

mean: 20k 

std: 12k 
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Experiments: Simulations 
 Data 

 Generate continuous data based on Gaussian 

distributions and generate labels according to the 

model 

 r: percentage of outliers, K: number of communities 

 Baseline models 

 GLODA: global outlier detection (based on node 

features only) 

 DNODA: local outlier detection (check the feature 

values of direct neighbors) 

 CNA: partition data into communities based on links 

and then conduct outlier detection in each community 
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Experiments: Simulations 

Precision 
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Case study on DBLP 

 Conferences graph 

 Links: % common authors among two 

 Node features: publication titles in the conference 

 Communities: 

 

 

 

 

 

 Community outliers: CVPR and CIKM 
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Cohesive groups in attributed graphs 

 Problem: 

Given a graph with node attributes (features) 
 social networks + user interests  

 phone call networks + customer demographics           

 gene interaction networks + gene expression info  

Find cohesive clusters, bridges, anomalies 
 

 

 

 

 

 

 

 

Note: cohesive cluster: similar connectivity & attributes 

 

 

Akoglu et al. ’12 

A 
B 
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Problem sketch 

People People Groups 

P
e
o
p
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P
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p
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(Binary) 
Features 

P
e
o
p
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Feature  
Groups 

P
e
o
p
le

 G
ro

u
p
s 

Given adjacency matrix A and feature matrix F 

Find homogeneous blocks (clusters) in A and F  

* parameter-free 

* scalable 

A F 
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Problem formulation 

1.How many node- & attribute-clusters? 

2.How to assign nodes and attributes to clusters? 

L (M)     +     L (D|M) 

encoding length 

of blocks 

encoding length 

of clustering 

Good  

Clustering 

Good 

Compression 
implies 

Main idea: employ Minimum Description Length 
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 L (M) : Model description cost 

1.   as                        n: #nodes, f: #attributes 

2.                               k: #node-clusters, l: #attribute-clusters 

3.                                                 size of node-cluster i 

                                                      size of attribute-cluster j    

 

 L(D|M): Data description cost given Model 

1. For each block in A and F , #1s:   

2.   

 

         where                                                    

                                           

 

Problem formulation 

or 

 
A similar problem (column re-ordering for minimum 

total run length) is shown to be NP-hard [Johnson+]. 

(reduction from Hamiltonian Path) 

 

details 
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Algorithm sketch 

 
The algorithm is iterative and monotonic 

 –will converge to local optimum 
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“core and periphery” 

liberal vs. 
conservative 

Book groups 

  
  
  
  
  

  
 

B
o
o
k
s 

  PICS at work (Political books) 

Examples of  bridging  ‘conservative’ books 

Examples of “core” liberal and conservative books 

–   
–   
–   
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  PICS at work (Reality mining) 

Subjects 

Subjects 

   title Phone calls 

Device scans 

casual 

business 

grad 

call-center 

    title 
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  PICS at work (YouTube) 

YouTube users YouTube 
groups 

77K users 

30K groups 

familiar strangers 

anime lovers 

bridges 

L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13) 106 



Part I: References (attribute graphs) 
 C. C. Noble and D. J. Cook. Graph-based anomaly 

detection. KDD, pages 631–636, 2003. 

 W. Eberle and L. B. Holder. Discovering structural 

anomalies in graph-based data. ICDM Workshops, pages 

393–398, 2007.  

 Michael Davis, Weiru Liu, Paul Miller, George Redpath: 

Detecting anomalies in graphs with numeric labels. 1197-

1202, CIKM 2011. 

 Jing Gao, Feng Liang, Wei Fan, Chi Wang, Yizhou Sun, 

Jiawei Han: On community outliers and their efficient 

detection in information networks. KDD 2010: 813-822. 

 Leman Akoglu, Hanghang Tong, Brendan Meeder, Christos 

Faloutsos.  PICS: Parameter-free Identification of Cohesive 

Subgroups in large attributed graphs. SDM, 2012.  

 

 

   

S
u

b
s
tr

u
c
tu

re
s
 

   

C
o

m
m

u
n

it
y
 m

in
in

g
 

L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13) 107 

http://ailab.wsu.edu/subdue/papers/NobleKDD03.pdf
http://ailab.wsu.edu/subdue/papers/NobleKDD03.pdf
http://ailab.wsu.edu/subdue/papers/NobleKDD03.pdf
http://ailab.wsu.edu/subdue/papers/NobleKDD03.pdf
http://www.cs.stonybrook.edu/~leman/icdm12/users.csc.tntech.edu/~weberle/MGCS2007.pdf
http://www.cs.stonybrook.edu/~leman/icdm12/users.csc.tntech.edu/~weberle/MGCS2007.pdf
http://www.cs.stonybrook.edu/~leman/icdm12/users.csc.tntech.edu/~weberle/MGCS2007.pdf
http://www.cs.stonybrook.edu/~leman/icdm12/users.csc.tntech.edu/~weberle/MGCS2007.pdf
http://www.cs.qub.ac.uk/~w.liu/cikm2011.pdf
http://www.cs.stonybrook.edu/~leman/icdm12/On community outliers and their efficient detection in information networks
http://www.cs.stonybrook.edu/~leman/icdm12/On community outliers and their efficient detection in information networks


Tutorial Outline 
 Motivation, applications, challenges 

 Part I: Anomaly detection in static data 

 Overview: Outliers in clouds of points 

 Anomaly detection in graph data 

 Part II: Event detection in dynamic data 

 Overview: Change detection in time series 

 Event detection in graph sequences 

 Part III: Graph-based algorithms and apps 

 Algorithms: relational learning 

 Applications: fraud and spam detection 
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