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Anomalies in labeled graphs 

 Problem: 

Q1. Given a graph in which nodes and edges     

       contain (non-unique) labels, what are   

       unusual substructures? 

Noble & Cook. ’03 
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Background 

 Subdue*: An algorithm for detecting repetitive 

patterns (substructures) within graphs.   

 Substructure: A connected subgraph of the 

overall graph. 

 Compressing a graph: Replacing each 

instance of the substructure with a new 

vertex representing that substructure. 

 Description Length (DL): Number of bits 

needed to encode a piece of data 

 

 

 

* http://ailab.wsu.edu/subdue/ 
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Background 

 Subdue uses the following heuristic: 

 The best substructure is the one that minimizes 

 F1(S,G) = DL(G | S) + DL(S) 

 G: Entire graph, S: The substructure,  

 DL(G|S) is the DL of G after compressing it using S,  

 DL(S) is  the description length of the substructure. 

 

 

 

 Iterations after compressing at each step 

S 
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Background 
Given database D and set of models 

for D, Minimum Description Length 

selects model M that minimizes 

     L (M)     +     L (D|M) 

length in bits:  

description of  

model M 

length in bits: data,  

encoded by M 

Bishop: PR&ML 

d = 1 

d = 9 

a1x+a0 deltas 

a9x
9+…+a1x+a0  {} 

vs. 

vs. 
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1) Anomalous Substructures 

 Main idea: anomalies (by def.) occur infrequently, 

they are roughly opposite to “best substructures” 

 Find substructures S that maximize F1(S,G)? 

 Nope, it flags all single nodes as anomalies! 

 Instead, find those that minimize 

    F2(S, G) = Size(S) * Instances(S,G) 

 Approximate inverse of F1(S,G) 

 

 Intuition: Larger substructures are expected to   

  occur few times; the smaller the   

  substructure, the less likely it is rare 
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Example 
 F2(S, G) = Size(S) * Instances(S,G) 

 For node D, F2 = 1 * 1 = 1 

 For AC and DA, it is 2 * 1 = 2 

 For G (whole graph), it is 9 * 1 = 9 

 Hence D is considered the most anomalous. 

 

 
 

 Note: Usually a threshold for F2 is used and 

anomalies are ranked by their scores. 
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Anomalies in labeled graphs 

 Problem: 

Q1. Given a graph in which nodes and edges     

       contain (non-unique) labels, what are   

       unusual substructures? 

Q2. Given a set of subgraphs, what are the  

       unusual subgraphs? 

 

 

 

 

 
Note: assumption is anomalies are connected 

Noble & Cook. ’03 
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2) Anomalous Subgraphs 

 Main idea: subgraphs containing few common 

substructures are generally more anomalous 

 Define anomaly score A in [0,1] 

# Subdue 

iterations 
fraction compressed  

at ith iteration 
fast drop off in  

early iterations 
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Experiments 

 Data: 1999 KDD Cup Network Intrusion 

 Ground truth: connection records, “normal” or 

attack (37 types), 41 features of connection 

(duration, protocol type, number of bytes, etc.) 

 Each individual test involved 50 records of which 

only one is of a particular attack type. 

 

 Use Subdue to find anomalous substructures 

 Prune all subgraphs with size>3, F2>6 (arbitrary) 
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Anomalies with numeric labels 

 How about numeric labels? 

 Noble & Cook work with categorical labels 

 

Davis et al. ’11 

(1) unusual substructures 
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 How about numeric labels? 

 Noble & Cook work with categorical labels 

 

Anomalies with numeric labels 

(2) unusual subgraphs 
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Anomalies with numeric labels 

 Main idea (discretization):  

 assign categoric label q0 to “normal” values, and  

 “outlierness” score qi to all others i 

 

 Example: 

 

 

 

 

 Several “outlierness” scores (pdf-fitting, kNN, 

    LOF, clustering-based) 

 

 

 

 

empirical distribution of a label 
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Discretization  

 Model fitting (GMM) 

 

 

 

 

 kNN distance 

normal 
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Discretization  

 Density outlier score (LOF) 

 

 

 

 Cluster-based (CbLOF) 

 

 

normal 

distance to closest “large” (k-means) cluster centroid 

Breunig et al. ’00 

He et al. ’03 
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Discretization 

 Other possible discretization techniques 

 SAX (Symbolic Aggregate approXimation) 

 http://www.cs.ucr.edu/~eamonn/SAX.htm 

 MDL-binning 

 P. Kontkanen and P. Myllymäki. MDL histogram 

 density estimation. In AISTAT, 2007. 

 Minimum entropy discretization 

 U.M. Fayyad and K.B. Irani. Multi-interval 

discretization of continuous-valued attributes for 

classification learning. In Proc. IJCAI, 1989. 

 Logarithmic binning 

 especially for skewed distributions 
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Experiment 
 Data: Access card transaction graphs 

 node: door sensor, edge (u,w): movement uw, 

weight(u,w): time uw  (only numeric attribute) 

 

normal anomaly score 

#
tr

a
n
sa

ct
io

n
s 

Subdue 
(numeric feat. ignored) 

CbLOF 
(k=10) 

Equal freq. 
(b=10) 

Equal width 
(b=10) 

k-NN dist. 
(k=10) 

* arbitrary k, b 
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Anomalies in labeled graphs 
 Problem: 

Q1. Given a graph in which nodes and edges  

 contain (non-unique) labels, how to find 

 substructures that are very similar to, though 

 not the same as, a normative substructure? 

 (“best substructure” as for Subdue)* 

 

 Intuition: 

 

Eberle and Holder. ’07 

“The more successful money-laundering 
apparatus is in imitating the patterns and 
behavior of legitimate transactions, the less 
the likelihood of it being exposed.”  

– United Nations Office on Drugs and Crime 
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Formal definition 
 Given graph G with a normative substructure S, 

a substructure S’ is anomalous if difference d 

between S and S’ satisfies 0 < d <= X, where X 

is a (user-defined) threshold and d is a measure 

of the unexpected structural difference. 

 Assumptions 

 Majority of G consists of a normative pattern, and 

no more than X% of it is altered in an anomaly. 

 Anomalies consist of one or more modifications, 

insertions or deletions. 

 Normative pattern is connected. 
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Three Types of Anomalies 

1) GBAD-MDL (Minimum Descriptive Length): 

 anomalous modifications 

2) GBAD-P (Probability): anomalous insertions 

3) GBAD-MPS (Maximum Partial Substructure): 

 anomalous deletions 

 

 

 
Note: prone to miss more than one type of anomaly  

 e.g., a deletion followed by modification 

L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13) 83 



1) Information Theoretic Approach 
 Find normative substructure S that minimizes 

 F(S,G) = DL(G | S) + DL(S) 

 For each instance Ik of S 

 

 

 Example: 

 

 
A

C B

A

D B

A

C B

A

C B

A

C B

cost to modify Ik into S  
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2) Probabilistic Approach 
 Find normative substructure S 

 Find extensions to S with lowest probability 

 For each extension Ik of S 

 

 

 

 Example: 

 

 

D

B

C A

B

C A

B

C A

D C D

B

C A

B

C A

E E

B

C A

B

C A

C
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3) Maximum Partial Substructure Approach 

 Find normative substructure S 

 Find “ancestral” substructures                that are 

missing various edges and vertices. 

 For each instance Ik of Sn 

 

 Example: 

 D

B

C A

B

C A

B

C A

D D D

B

C A

B

C A

# instances of Ik  

L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13) 86 



Experiments (Cargo shipments) 

 Data: obtained from Customs                            

and Borders Protection (CBP) 

 Scenario: 

 Marijuana seized at Florida port [press release by U.S. 

Customs Service, 2000]. 

 Smuggler did not disclose some financial information, 

and ship traversed extra port. 

 GBAD-P discovers the extra traversed port; 

 GBAD-MPS discovers the missing financial info. 
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Experiments (Network intrusion) 

 Data: 1999 KDD Cup Network Intrusion 

 100% of attacks were discovered with GBAD-MDL 

 55.8% for GBAD-P and 47.8% for GBAD-MPS 

 

Note  

 Data consists of TCP packets that have fixed size 

 Thus, the inclusion of additional structure, or  the 

removal of structure, is not relevant here. 

 Modification is the only relevant one, at which GBAD-

MDL  performs well 

 

 High (unreported) false positive rate! 
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Community Outliers 
 Definition 

 Two information sources: links, node features 

 Communities based on both links and node features 

 Objects with features deviating from other community 
members defined as community outliers 

 

Gao et al. ’10 

Community  

outlier 
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community 

label Z 

{0, 1, …, K} 

outlier 

node 

features 

X 

link structure 

W 

model 

parameters 

X’s are 

drawn from 

K: number of 

communities 

(user input) 

A unified probabilistic model  
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Optimization formulation 

 Maximize P(X)       P(X|Z) P(Z) 
 P(X|Z) depends on community label and model param.s 

 e.g., salaries in the high or low-income communities follow 
Gaussian distributions defined by mean and std 

 

 

 

 

 P(Z) is higher if neighboring nodes from normal 
communities share the same community label 
 e.g., two linked nodes are likely to be in the same community 

 outliers are isolated—does not depend on the labels of neighbors 

 

 



Uniform for outliers 



Normal with 

details 
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Algorithm 

Fix    , find Z  
that maximizes P(Z|X) 

Fix Z, find  
that maximizes P(X|Z) 





Initialize Z 

Inference 

Parameter 

estimation 

  : model parameters 

Z : community labels 
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 Initialization is very important (by clustering) 

 Convergence/correctness not guaranteed 



Algorithm: parameter estimation 
 Calculate model parameters 

 maximum likelihood estimation 

 Continuous: 
 mean: sample mean of the community 

 std: square root of sample variance of community 

high-income: 

mean: 116k 

std: 35k 

low-income: 

mean: 20k 

std: 12k 
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Algorithm: inference  
 Calculate label assignments Z 

 Model parameters are known 

 Iteratively update the community labels of nodes 

 For each node: select label that maximizes: 

 

100k 
low-
income 

high-
income 

high-
income 

P(salary=100k|high-income) 

P(salary=100k|low-income) 

constant 

P(high-income|neighbors) 

P(low-income|neighbors) 

high-income: 

low-income: 

outlier: 

high-income: 

mean: 116k 

std: 35k 

low-income: 

mean: 20k 

std: 12k 
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Experiments: Simulations 
 Data 

 Generate continuous data based on Gaussian 

distributions and generate labels according to the 

model 

 r: percentage of outliers, K: number of communities 

 Baseline models 

 GLODA: global outlier detection (based on node 

features only) 

 DNODA: local outlier detection (check the feature 

values of direct neighbors) 

 CNA: partition data into communities based on links 

and then conduct outlier detection in each community 
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Experiments: Simulations 

Precision 
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Case study on DBLP 

 Conferences graph 

 Links: % common authors among two 

 Node features: publication titles in the conference 

 Communities: 

 

 

 

 

 

 Community outliers: CVPR and CIKM 
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Cohesive groups in attributed graphs 

 Problem: 

Given a graph with node attributes (features) 
 social networks + user interests  

 phone call networks + customer demographics           

 gene interaction networks + gene expression info  

Find cohesive clusters, bridges, anomalies 
 

 

 

 

 

 

 

 

Note: cohesive cluster: similar connectivity & attributes 

 

 

Akoglu et al. ’12 

A 
B 
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Problem sketch 

People People Groups 

P
e
o
p
le

 

P
e
o
p
le

 G
ro
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p
s 

(Binary) 
Features 

P
e
o
p
le

 

Feature  
Groups 

P
e
o
p
le

 G
ro

u
p
s 

Given adjacency matrix A and feature matrix F 

Find homogeneous blocks (clusters) in A and F  

* parameter-free 

* scalable 

A F 
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Problem formulation 

1.How many node- & attribute-clusters? 

2.How to assign nodes and attributes to clusters? 

L (M)     +     L (D|M) 

encoding length 

of blocks 

encoding length 

of clustering 

Good  

Clustering 

Good 

Compression 
implies 

Main idea: employ Minimum Description Length 
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 L (M) : Model description cost 

1.   as                        n: #nodes, f: #attributes 

2.                               k: #node-clusters, l: #attribute-clusters 

3.                                                 size of node-cluster i 

                                                      size of attribute-cluster j    

 

 L(D|M): Data description cost given Model 

1. For each block in A and F , #1s:   

2.   

 

         where                                                    

                                           

 

Problem formulation 

or 

 
A similar problem (column re-ordering for minimum 

total run length) is shown to be NP-hard [Johnson+]. 

(reduction from Hamiltonian Path) 

 

details 
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Algorithm sketch 

 
The algorithm is iterative and monotonic 

 –will converge to local optimum 
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“core and periphery” 

liberal vs. 
conservative 

Book groups 

  
  
  
  
  

  
 

B
o
o
k
s 

  PICS at work (Political books) 

Examples of  bridging  ‘conservative’ books 

Examples of “core” liberal and conservative books 

–   
–   
–   
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  PICS at work (Reality mining) 

Subjects 

Subjects 

   title Phone calls 

Device scans 

casual 

business 

grad 

call-center 

    title 
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  PICS at work (YouTube) 

YouTube users YouTube 
groups 

77K users 

30K groups 

familiar strangers 

anime lovers 

bridges 
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Tutorial Outline 
 Motivation, applications, challenges 

 Part I: Anomaly detection in static data 

 Overview: Outliers in clouds of points 

 Anomaly detection in graph data 

 Part II: Event detection in dynamic data 

 Overview: Change detection in time series 

 Event detection in graph sequences 

 Part III: Graph-based algorithms and apps 

 Algorithms: relational learning 

 Applications: fraud and spam detection 
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